
NUS at DUC 2007: Using Evolutionary Models of Text

Ziheng Lin, Tat-Seng Chua, Min-Yen Kan,
Wee Sun Lee, Long Qiu and Shiren Ye

School of Computing
National University of Singapore

Singapore, 117543
{linzihen|chuats|kanmy|leews|qiul|yesr}@comp.nus.edu.sg

Abstract

This paper presents our new, query-
based multi-document summariza-
tion system used in DUC 2007. Cur-
rent graph-based approaches to text
summarization, such as TextRank and
LexRank, assume a static graph model
which does not model how input
text emerges. A suitable evolution-
ary graph model that is related to
human writing/reading process may
impart a better understanding of the
text and improve the subsequent sum-
marization process. We propose a
timestamped graph (TSG) model mo-
tivated by human writing and reading
processes, and show how input text
emerges under the construction phase
of TSG. We applied TSG on both the
main task and update summary task
in Document Understanding Confer-
ences (DUC) 2007 and achieved satis-
factory results. We also suggested a
modified MMR re-ranker for the up-
date task.

1 Introduction

Graph-based ranking algorithms such as Klein-
berg’s HITS (Kleinberg, 1999) or Google’s
PageRank (Brin and Page, 1998) have been suc-
cessfully applied in citation network analysis
and ranking of webpages. These algorithms es-
sentially compute the weights of graph nodes

based on global topological information. The
graphs that these algorithms applied on - cita-
tion networks and the Web - feature a dynamic
and evolutionary model, in which they evolve
over timesteps.

Recently, a number of graph-based ap-
proaches have been suggested for NLP appli-
cations based on ranking algorithms like HITS
and PageRank. Erkan and Radev (2004) intro-
duced LexRank for multi-document text sum-
marization. Mihalcea and Tarau (2004) intro-
duced TextRank for keyword and sentence ex-
tractions. Both LexRank and TextRank assume
a fully connected, undirected graph, where text
units are modeled as nodes and similarities as
edges. After graph construction, both algo-
rithms use a random walk on the graph to redis-
tribute the node weights. However, LexRank
and TextRank assume static text graphs which
do not model how the input texts evolve. we be-
lieve that by integrating evolving process in the
graph model, we can better approximate how
documents have been written, and then use the
role that a particular sentence played in this
writing process to infer its function/importance.

2 System Overview

We implement our system using the MEAD
summarization toolkit (Radev et al., 2001) and
Clair library from the CLAIR research group.
Figure 1 shows the overview of our summariza-
tion system. The input to the system is a user
query and one or two clusters of documents,
depending on whether it is the main task or up-

date task.

1. Sentence splitter. Given a cluster of doc-
uments, the sentence splitter detects and
marks sentence boundaries in each docu-
ment. In addition, it annotates each sen-
tence with the document ID and the sen-
tence number in the document. E.g., ID
XIE19980304.0061 means that this docu-
ment is from 4 March, 1998, taken from
Xinhua News; XIE19980304.0061-14 means
the 14th sentence in this document. This is
the timestamp used in graph construction
phase.

2. Graph constructor. The timestamped
graph is constructed in this phase,with sen-
tences as nodes and similarities as edges.
The graph construction process will be dis-
cussed in Section 3.

3. Sentence ranker. Given a constructed
graph, a sentence ranker applies random
walk on the graph to redistribute the
weights of the nodes. A topic-sensitive ran-
dom walk is applied as the task is query-
based. After the ranking algorithm con-
verges, the sentences are ranked according
to their weights. Random walk will be dis-
cussed in Section 4.

4. Extractor. Finally, an extractor selects
the top-ranked sentences and concatenates
them to form the summary. The extrac-
tor employs a sentence re-ranker to filter
out redundant information. Two differ-
ent modified versions of Maximal Marginal
Relevance (MMR) sentence re-ranker are
used, depending on whether it is main task
or update task. The modified versions of
MMR re-ranker are introduced in Section
5.

3 Timestamped Graph Construction

We believe that a proper evolutionary graph
model of text should capture the writing and
reading processes of humans. Although such
human processes vary widely, when we limit

Figure 1: System Overview

ourselves to expository text, we will find
that both skilled writers and readers often
follow conventional rhetorical styles (Endres-
Niggemeyer, 1998; Liddy, 1991). We explore
how a simple model of evolution affects graph
construction and subsequent summarization.
Our work is only exploratory and not meant
to realistically model human processes and we
believe that deep understanding and inference
of rhetorical styles (Mann and Thompson, 1988)
will improve the fidelity of our model. Never-
theless, a simple model is a good starting point.

We make two simple assumptions of human
writing and reading processes:

1. Writers write articles from the first sentence
to the last;

2. Readers read articles from the first sentence
to the last.

The assumptions suggest that we add sen-
tences into the graph in chronological order: we
add the first sentence, followed by the second
sentence, and so forth, until the last sentence is
added.

These assumptions are suitable in modeling
the growth of individual documents. However
when dealing with multi-document input, our

assumptions do not lead to a straightforward
model as to which sentences should appear
in the graph before others. One simple way
is to treat multi-document problems simply as
multiple instances of the single document prob-
lem, which evolve in parallel. Thus, in multi-
document graphs, we add a sentence from each
document in the input set into the graph at each
timestep. Our model introduces a skew variable
to model this and other possible variations.

The pseudocode in Figure 2 summarizes how
we would build a timestamped graph for multi-
document input set. Informally, we build
the graph incrementally, introducing new sen-
tence(s) as node(s) in the graph at each timestep.
Next, out of those not yet connected with it, each
sentence in the graph picks and connects to the
one that is most similar to itself. This process
continues until all sentences are placed into the
graph.

Input: M, a cluster of m documents relating to a com-
mon event;
Variables:
i = index to sentences, initially 1;
G = the timestamped graph, initially empty.
Loop:

1. Add the ith sentence of all documents into G. If a
document is shorter than i, no sentence is added
for this document.

2. Let each existing sentence in G choose and con-
nect to one other existing sentence in G. The cho-
sen sentence must be one which has not been pre-
viously chosen by this sentence.

3. if there are no new sentences to add, break;
else i++, go to Step 1.

Output: G, a timestamped graph.

Figure 2: Pseudocode for a specific instance of a
generic timestamped graph construction algo-
rithm

Figure 3 shows an example of the graph build-
ing process over three timesteps, starting from
an empty graph. Assume that we have three
documents and each document has three sen-
tences. Let dxsy indicate the yth sentence in the
xth document. At timestep 1, sentences d1s1, d2s1
and d3s1 are added to the graph. Three edges are
introduced to the graph, in which the edges are

instantiated by some strategy; say, by choosing
the destination sentence by its maximum cosine
similarity with the sentence under considera-
tion. Without loss of generality let us say that
this process connects d1s1→d3s1, d2s1→d3s1 and
d3s1→d2s1. At timestep 2, sentences d1s2, d2s2
and d3s2 are added to the graph and six new
edges are introduced to the graph. At timestep
3, sentences d1s3, d2s3 and d3s3 are added to the
graph, and nine new edges are introduced.

Figure 3: An example of the growth of a times-
tamped graph.

The above illustration is just one instance
of a timestamped graph with specific param-
eter settings. We generalize and formalize the
timestamped graph construction algorithm as
follows:

Definition: A timestamped graph con-
struction algorithm tsg(M) is a 9-tuple
(d, e, u, f, σ, t, i, s, τ) that specifies an algorithm
that takes as input the set of texts M and outputs
a graph G, where:

d specifies the direction of the edges,
d ∈ { f, b, u}, which represents for-
ward/backward/undirected edges. It spec-
ifies the direction of information flow;

e is the number of edges to add for each ver-
tex in G at each timestep, e ∈ Z+;

u is 0 or 1, where 0 and 1 specifies un-
weighted and weighted edges, respec-
tively;

f is the inter-document factor, 0 ≤ f ≤
1. If intra-document edges are preferred
over inter-document edges, we replace the
weight w for inter-document edges by f w;

σ is a vertex selection function σ(u, G) that
takes in a vertex u and G, and chooses a
vertex v ∈ G. One strategy is to choose v
that has the highest similarity with u and
has not yet been chosen by u in previous
iterations. There are many similarity func-
tions to use, including token-based Jaccard
similarity, cosine similarity, or more com-
plex models such as concept links (Ye et al.,
2005);

t gives the granularity of the text units, t ∈
{word, phrase, sentence, paragraph, document}.
In the task of automatic text summariza-
tion, systems are conveniently assessed by
letting text units be sentences;

i is the node increment factor, i ∈ Z+. It
means that at each timestep, i vertices are
added for each document;

s is the skew degree, s ≥ −1 and s ∈ Z, where
-1 represent free skew and 0 no skew. If
document d1 is earlier than d2 in time, s = 1
means that the first sentence of d1 is added
1 timestep earlier than that of d2;

τ is a document segmentation function τ(•).
If the documents vary widely in their
lengths, we may need to segment long doc-
uments so that they have similar lengths.

Following our definition, the example in Fig-
ure 3 can be succinctly represented by the tuple
(f, 1, 0, 1, max−cosine−based, sentence, 1, 0, null).
For a more detailed description of timestamped
graph construction and skew degree we refer
the readers to (Lin and Kan, 2007).

4 Sentence Ranking

Once a timestamped graph is built, we want
to compute an importance score for each node.
The graph G shows how information flows from
node to node, but we have yet to let the infor-
mation actually flow. Most graph algorithms
use an iterative method that allows the weights
of the nodes to redistribute until stability is
reached. One method for this is by applying
a random walk, used in PageRank (Brin and

Page, 1998). In PageRank, the Web is treated
as a graph of webpages connected by links. It
assumes users start from a random webpage,
moving from page to page by following the
links or jumping randomly.

The original equation of PageRank assumes
unweighted edges in computation as it assumes
hyperlinks are unweighted. In our text graphs,
unweighted edges may cause loss of informa-
tion. As we have a query for each docu-
ment cluster, we also wish to take queries into
consideration in ranking the nodes. Haveli-
wala (2003) introduced a topic-sensitive PageR-
ank computation. The key to creating topic-
sensitive PageRank is that we can bias the com-
putation by restricting the user to jump only
to a random node which has non-zero similar-
ity with the query. Integrating weighted edges
and query-as-topic sensitivity into the original
PageRank equation, we compute a weight PR(u)
for node u according to:

PR (u) = α
sim (u, Q)
∑

y∈N

sim
(

y, Q
)

+ (1 − α)
∑

v∈In(u)

wvu
∑

x∈Out(v)

wvx

PR (v)

(1)
Here N is the set of all nodes in the graph,

sim(u, Q) is the similarity score between node
u and the query Q. In(u) is the set of nodes
that point to u, Out(v) is the set of nodes that
node v points to and wvu represents the weight
of the edge pointing from v to u. The α is a
balancing factor that can be set between 0 and 1.
Equation 1 is applied on a timestamped graph
G iteratively until it converges. The weights of
the nodes are ranking scores of the sentences.

5 Sentence Extraction

The original MMR re-ranker proposed by Car-
bonell and Goldstein (1998) defines that a doc-
ument has MMR if it is relevant to the query
and contains minimal similarity to previously
selected documents. It integrates a negative ef-
fect of the maximal similarity of the candidate
document and one selected document. Ye et
al. (2005) revise the equation and introduce a
modified version of MMR sentence re-ranker
as shown in Equation 2. They show that con-

sidering the maximal similarity of a candidate
sentence and a selected sentence is not always
optimal, and propose considering the total simi-
larity of the candidate sentence with all selected
sentences in the sentence selection stage.

MMRmod = argmax
si∈R−S

[λ· Score(si) + (1 − λ)· sim(si, Q)

−δ·
∑

sk∈S

sim(si, sk)]. (2)

In Equation 2, Score(s) represents the ranking
score for sentence s computed in Section 4; λ
represents a tuning factor between a sentence’s
importance and its relevance to the query; δ is
the penalty factor which is used to decrease the
rank of sentences that are similar to the already
selected summary sentences in S. Before sen-
tence extraction, the set of selected sentences,
S, is empty; as sentences are extracted, they are
also added to S.

While the above is fine for the traditional
multi-document summarization task, it does
not model the update summary task well. We
need to differentiate between sentences in the
two different clusters. We propose a modified
version of MMR in Equation 3 that is applica-
ble in the update task. Under the assumption
for update summary task that readers already
read the previous cluster(s), we do not want
to select sentences that have redundant infor-
mation with previous cluster(s). Thus, during
the computation of MMR in the update task,
not only selected sentences in the summary are
under consideration, but sentences in previous
cluster(s) also need to be taken into account. To
speed up the computation of total similarity of
the candidate sentence and the sentences in pre-
vious cluster(s), and to remove noisy sentences
from previous cluster(s) from the computation,
we only consider P, which contains some top-
ranked sentences in previous cluster(s). Here γ
is the penalty factor that is similar to δ in effect.

MMRmod2 = argmax
si∈R−S

[λ· Score(si) + (1 − λ)· sim(si, Q)

−δ·
∑

sk∈S

sim(si, sk) − γ·
∑

s j∈P

sim(si, s j)] (3)

Assume that readers already read all docu-
ments in cluster A, and now we need to extract a
summary for cluster B for the readers. Suppose
we already have the ranked list of sentences
of cluster A (if we don’t, we need to compute
it using sentence ranking), we add some top-
ranked sentences from A into the set P. During
sentence extraction, the sentence under consid-
eration will not only be compared to selected
sentences in S, but also be compared to sen-
tences in P.

6 Summarization Processes

For the main task, there are 45 document clus-
ters, each input cluster contains 25 documents
and a user query, and the system needs to
generate a 250-word summary for each clus-
ter. The summarization process for the main
task is straightforward. We construct a times-
tamped graph for the input cluster in the graph
construction phase. In sentence ranking phase,
we run topic-sensitive PageRank to smooth the
weights of the nodes (scores of sentences), fol-
lowed by ranking the sentences by their scores
in decreasing order. In sentence extraction
phase, Equation 2 is applied to the ranked list
to minimize redundancy during the extraction
of summary sentences.

Ten documents clusters are selected from the
45 clusters of the main task for preparation of
the update summary task. Each of these ten
clusters is divided into three smaller clusters,
A, B and C. Usually A contains ten documents,
B eight documents and C seven documents. The
three smaller clusters have the same user query
as the original larger cluster. The summariza-
tion system needs to give a 100-word update
summary for each smaller cluster. Documents
in cluster A are published earlier than that in
B, and documents in B earlier than that in C.
We apply the same summarization process for
cluster A as in the main task to extract a sum-
mary for cluster A, with the exception that we
use Equation 3 in sentence extraction phase, in-
stead of Equation 2. In Equation 3, P is de-
fined as the set of top-ranked sentences in the
clusters that are read by the readers previously.

Notice that during sentence extraction here, P
is empty as there is no previously-read cluster
before cluster A. After the 100-word summary
is generated, twenty top-ranked sentences in A
are selected to be included in P, so that P can
later be used in the summarization process of
cluster B.

To summarize the cluster B, we construct a
timestamped graph for all documents in both
clusters A and B in graph construction phase.
In sentence ranking phase, we then run topic-
sensitive PageRank on the graph, followed by
ranking the sentences in cluster B by their
scores, ignoring sentences in cluster A (i.e., all
sentences belong to A receive zero score). In
sentence extraction phase, we apply Equation 3
to the ranked list, where P is from the summa-
rization of cluster A. After a 100-word summary
is extracted, twenty top-ranked sentences in B
are added into P. P now contains 40 top-ranked
sentences, in which twenty are from cluster A
and the other twenty from clusters B, and is
ready for the summarization of cluster C.

To summarize the cluster C, we construct
a timestamped graph for all documents in all
clusters A, B and C, and then run topic-sensitive
PageRank on the graph. We rank the sentences
in cluster C by their scores, ignoring sentences
in clusters A and B. We apply Equation 3 to the
ranked list during sentence selection, where P
is from the summarization of cluster B. A 100-
word summary is generated for cluster C.

7 Experimental Results

For the main task, our system uses the tuple
(u, 1, 1, 1, concept−link−based, sentence, 1, 0, null)
in timestamped graph construction, applies
topic-sensitive PageRank in sentence ranking,
setting λ = 0.8 and δ = 6 for Equation 2 in
sentence extraction. The values for λ and δ
and tuned from DUC 2005 and 2006 datasets.
concept−link−based is a node selection function
based on the concept link computation used in
our previous summarization system. Figure
4 shows ROUGE-2 and ROUGE-SU4 scores
for our system. The average recall under
ROUGE-2 and ROUGE-SU4 are 0.1037 and

0.15857, respectively, and our systems ranks
12th for ROUGE-2 and 10th for ROUGE-SU4
among all 32 peer systems.

Figure 4: ROUGE scores for main task. Black,
gray and white bars denote our system, human
annotators and peer systems, respectively.

There are 24 systems participated in the up-
date summary task. Our system uses the tuple
(u, 1, 1, 1, concept−link−based, sentence, 1, 0, null)
in timestamped graph construction, applies
topic-sensitive PageRank in sentence ranking,
and set λ = 0.8, δ = 3 and γ = 6 for Equation 3
in sentence extraction. We do not have test data
for update summary task to tune these three
parameters. We set the values for them based
on our experience on the main task. Figure 5
shows ROUGE-2 and ROUGE-SU4 scores for
our system. The average recall computed using
ROUGE-2 and ROUGE-SU4 are 0.09622 and
0.13245, respectively, and our systems ranks 3rd

for ROUGE-2 and 4th for ROUGE-SU4 among
all 24 peer systems.

The system performs better in the update task
than in the main task. One reason is that the
lengths of the summaries are shorter (100 words
in update task compared to 250 words in main
task), and our system performs well in locat-
ing the most topic-related and salient sentences

(the top two or three sentences) but less well
in locating the generic and salient ones. An-
other reason is that the second modified ver-
sion of MMR as in Equation 3 works well in
distilling redundant information that is shown
in previously-read cluster(s).

Figure 5: ROUGE scores for update task. Black,
gray and white bars denote our system, human
annotators and peer systems, respectively.

There are in total 30 standard pyramids cre-
ated by annotators. Figure 6 shows the average
score, maximum score and our system’s score
for each pyramid set. Our system scores bet-
ter than the average scores in 18 out of 30 sets.
The average scores over all pyramid sets are
shown in Figure 7. The best system has the aver-
age score of 0.3403, whereas our system obtains
0.2684 on average, which is ranked 6th among
all 24 systems.

There are two sets of pyramids that our sys-
tem obtain zero score. In D0736-A, the most im-
portant sentence extracted by our system is a list
of talk shows. This sentence has very generic
information and thus has a high in-degree in
the graph, but is not related to the query. Fig-
ure 8 show the update summaries for D0736-A,
D0736-B and D0736-C and their query. The texts
in bold are information that also shown in some

Figure 6: Pyramid scores for update task. Gray,
black and white bars denote average scores,
maximum scores and scores for our system, re-
spectively.

Figure 7: Average pyramid scores for update
task. The RUNID for our system is 45.

model summaries. We see that there is no bold
text in the summary for D0736-A; the sentences
that the system extracts are generic but not rel-
evant to the query.

In D0727-B, it seems that information from
both D0727-A and D0727-B is not enough to
help the system to locate the updated and
important information in D0727-B. When we
go to D0727-C, the information provided from
D0727-A, -B and -C is then enough for the sys-
tem to outperform the average.

Looking into all 30 sets of pyramid results, we
notice that our system always outperforms the
average in all clusters C, except D0740-C. The
performance in B tends to be better than that
in A, and the performance in C better than that
in B. This is because in a text graph like times-
tamped graph, more global information helps
the system to locate the updated and salient

Query:
Note the various subjects and controversial incidents on Oprah’s show 1998-2000.
D0736-A:
Talk show: “Leeza,” NBC; “The Rosie O’Donnell Show,” Syndicated; “Live With
Regis and Kathie Lee,” Syndicated; “The Oprah Winfrey Show,” Syndicated;
“The View,” ABC. The return to violence helped “Springer” claw its way to
a virtual tie with one-time giant “The Oprah Winfrey Show” in July ratings as
metro Atlanta’s most-watched daytime talk show. Vogue’s Anna Wintour exults
in the editor’s note at the front of the Oprah issue that the magazine staff was
thrilled ”when we heard that Oprah Winfrey wanted to be made glamorous.
Oprah Winfrey is fed up with the sleaze on daytime television – especially rival
D0736-B:
The talk show host Oprah Winfrey, a powerful figure in the book world
because of Oprah’s Book Club, received a 50th Anniversary Medal from the
foundation. Talk show host Oprah Winfrey is starting a magazine next spring
with the magazine publisher Hearst Corp. Hearst said in a statement that the
new magazine will offer articles on community, family, relationships, health and
fitness, fashion and beauty, and books. The success of “Donahue” makes room
for Oprah Winfrey, who takes her Chicago-based talk show national. “There’s
a lot of instant power in being the head of a studio,” Tierney noted.
D0736-C:
Under Oprah’s influence Tipper would show a touch of girlish soulfulness,
while Oprah could add chipper gentility to her repertory. Oprah is a real-life
extension of this fantasy, bestowing gifts on her television audiences - food,
CDs, Palm Pilots - and opportunities for self-enhancement and self-discipline
on all her fans. George W. Bush courts women voters by appearing on the
Oprah Winfrey show as Al Gore did last week. Both in her magazine and on
her television show, Oprah’s name is used in a queenly manner. What’s hers is
ours, it seems: the magazine’s sensible psychologist, Dr. Phillip C. McGraw,

Figure 8: Update summaries for D0736-A,
D0736-B and D0736-C. The texts in bold show
updated information that corresponds to hu-
man summaries.

parts more effectively.
We did not experiment and integrate the skew

degree s and document segmentation function
τ into the system because of time constraint.
Free skew may capture the time order between
documents, and applying segmentation on ex-
tremely long documents may prevent graphs
with dense edges. We believe that once inte-
grated with s and τ, the performance on both
tasks will be increased.

8 Conclusion

We have proposed a timestamped graph model
for text graph construction. This model is based
on our assumptions about human writing and
reading processes. As part of DUC 2007, we
participate in both the main task and the update
summary task. Based on the modified version
of MMR re-ranker we used in DUC 2005, we
suggested another version of MMR re-ranker
for sentence extraction in the update summary
task. The results are satisfactory and show that
the modified MMR re-ranker works very well
in update task. We believe that when integrated
with free skewing and document segmentation,
our system will give a better performance.

References
Sergey Brin and Lawrence Page. 1998. The anatomy

of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–
117, April.

Jaime Carbonell and Jade Goldstein. 1998. The use
of MMR, diversity-based reranking for reordering
documents and producing summaries. In Proceed-
ings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, pages 335–336.

Brigitte Endres-Niggemeyer. 1998. Summarizing in-
formation. Springer New York, New York.

Günes Erkan and Dragomir R. Radev. 2004.
LexRank: Graph-based lexical centrality as
salience in text summarization. Journal of Artifi-
cial Intelligence Research, 22:457–479.

Taher H. Haveliwala. 2003. Topic-sensitive PageR-
ank: A context-sensitive ranking algorithm for
Web search. IEEETKDE: IEEE Transactions on
Knowledge and Data Engineering, 15.

Jon M. Kleinberg. 1999. Authoritative sources in
a hyperlinked environment. Journal of the ACM,
46(5):604–632, November.

Elizabeth D. Liddy. 1991. The discourse-level struc-
ture of empirical abstracts: an exploratory study.
Information Processing and Management: an Interna-
tional Journal, 27(1):55–81, January.

Ziheng Lin and Min-Yen Kan. 2007. Timestamped
Graphs: Evolutionary models of text for multi-
document summarization. In Proceedings of HLT-
NAACL 2007 Workshop on TextGraphs-2, Rochester,
April.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Towards a functional
theory of text organization. Text, 8(3):243–281.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into texts. In Proceedings of EMNLP
2004, pages 404–411, Barcelona, Spain, July.

Dragomir R. Radev, Sasha Blair-Goldensohn, and
Zhu Zhang. 2001. Experiments in single and
multi-document summarization using mead. In
Proceedings of ACM SIGIR’01 Workshop on Text
Summarization, New Orleans, Louisiana, Septem-
ber 13.

Shiren Ye, Long Qiu, Tat-Seng Chua, and Min-Yen
Kan. 2005. NUS at DUC 2005: Understanding
documents via concepts links. In Proceedings of
DUC 2005.

